Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.07.12.22276726

RESUMO

COVID-19 caused by SARS-CoV-2 can develop the disease with different degree of clinical severity including fatality. In addition to antibody responses the antigen specific T cells may play a critical role in defining this protective immune response against this virus. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell specific immune responses, we sought to evaluate the activation induced cell marker (AIM) and the status of different immune cell subsets during infection. A total of 115 participants were analyzed in this study which included participants with asymptomatic, mild, moderate and severe clinical symptoms. In addition, healthy controls (19 in each group) were analysed. Specimens from participants collected during the pre-pandemic period were also analyzed (n=10). Follow-up visits were conducted on day 7, 14, and 28 for all the cases since the enrollment (day 1). In this study 10 participants among the moderate and severe cases expired during the course of follow up. We observed a decrease in mucosa associated invariant T (MAIT) cell frequency on the initial days (day 1 and day 7) in comparison to later days of the COVID-19 infection. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of disease compared to both asymptomatic patients and healthy individuals. Moreover, we found AIM+ (both OX40+ CD137+ and OX40+ CD40L+) CD4+ T cells to show significant increase in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (specially spike peptide) compared to prepandemic controls, who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIM markers (CD137+ CD69+), which indicates the exhaustion of CD8+ T cells during COVID-19 infection. These findings suggest that the patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T cell response against shared viral determinants that ultimately induced the T cells to mount further immune responses to SARS-CoV-2.


Assuntos
Carcinoma de Células Renais , COVID-19
2.
authorea preprints; 2021.
Preprint em Inglês | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.163782453.30869562.v1

RESUMO

Bangladesh recently faced large outbreaks of both COVID-19 and Dengue fever. A 28-year-old woman suffered from symptoms including hemoptysis as first presentation followed by high-grade fever, sore throat, and fatigue. SARS-CoV-2 was confirmed by RT-PCR and also diagnosed dengue later on.COVID-19 and dengue fever could be a harmful combination.


Assuntos
COVID-19 , Dengue
3.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.10.05.21264551

RESUMO

Early detection of SARS-CoV-2 infection is crucial to prevent the spread of the virus. In this study, we evaluated the performance of a commercial rapid antigen detection test, BD Veritor, and compared this (and another rapid test, Standard Q) against a gold-standard of nasopharyngeal (NP) swab tested by reverse transcription-polymerase chain reaction (RT-PCR) in prospectively-recruited adults in Dhaka, Bangladesh. We compared the sensitivity and specificity of the two rapid antigen tests against RT-PCR results in 130 symptomatic and 130 asymptomatic adults. In addition, we evaluated the suitability and ease-of-use of the BD Veritor test in a subsample of study participants (n=42) and implementers (n=5). The sensitivity of the BD Veritor rapid antigen test was 70% in symptomatic (95% confidence interval [CI]: 51-85%) and 87% (95% CI: 69-96%) in asymptomatic individuals with positive SARSCoV-2 RT-PCR, for overall sensitivity of 78% (95% CI: 66-88%). The sensitivity of the Standard Q rapid antigen test was 63% (95% CI: 44-80%) in symptomatic and 73% (95% CI: 54-87%) in asymptomatic individuals. One false positive in BD Veritor test (specificity 99.5) and no false positive in Standard Q tests were observed (specificity 100%). The BD Veritor rapid antigen test was 78% sensitive when compared with RT-PCR irrespective of the cycle threshold (Ct) levels in this evaluation in Bangladesh. The implementation evaluation data showed good acceptability in the field settings. This warrants large field evaluation as well as use of the rapid antigen test for quick assessment of SARS-CoV-2 for containment of epidemics in the country.


Assuntos
COVID-19
4.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.07.16.21260611

RESUMO

In a representative serosurvey conducted March–June 2021, 64.1% (95%CrI 60.0– 68.1%) of Sitakunda subdistrict (Bangladesh) had anti-SARS-CoV-2 IgG antibodies after adjusting for age, sex, household clustering and test performance. Before the surge of Delta, most of the population had been infected despite low incidence of virologically-confirmed COVID-19.


Assuntos
COVID-19 , Fraturas de Estresse
5.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.06.03.21258290

RESUMO

BackgroundThe COVID-19 pandemic has resulted in a need for rapid identification of infectious cases. Testing barriers have prohibited adequate screening for SARS COV2, resulting in significant delays in treatment provision and commencement of outbreak control measures. This study aimed to generate evidence on the performance and implementation characteristics of the BD Veritor rapid antigen test as compared to the gold standard test for diagnosis of SARS COV2 in Kenya. MethodsThis was a field test performance evaluation in symptomatic and asymptomatic adults undergoing testing for SARS COV2. Recruited participants were classified as SARS-CoV2-positive based on the locally implemented gold standard reverse transcription polymerase chain reaction (RT-PCR) test performed on nasopharyngeal swabs. 272 antigen tests were performed with simultaneous gold standard testing, allowing us to estimate sensitivity, specificity, positive and negative predictive values for the BD Veritor rapid antigen test platform. Implementation characteristics were assessed using the Consolidated Framework for Implementation Research for feasibility, acceptability, turn-around time, and ease-of-use metrics. Results and DiscussionWe enrolled 97 PCR negative symptomatic and 128 PCR negative asymptomatic, and 28 PCR positive symptomatic and 19 PCR positive asymptomatic participants. Compared to the gold standard, the sensitivity of the BD Veritor antigen test was 94% (95% confidence interval [CI] 86.6 to 100.0) while the specificity was 98% (95% confidence interval [CI] 96 to 100). The sensitivity of BD Veritor antigen test was higher among symptomatic (100%) compared to asymptomatic (84%) participants, although this difference was not statistically significant. There was also a lack of association between cycle threshold value and sensitivity of BD Veritor test. The BD Veritor test had quick turnaround time and minimal resource requirements, and laboratory personnel conducting testing felt that it was easier to use than the gold standard RT-PCR. ConclusionThe BD Veritor rapid antigen test exhibited excellent sensitivity and specificity when used to detect SARS-CoV-2 infection among both symptomatic and asymptomatic individuals in varied population settings in Kenya. It was feasible to implement and easy to use, with rapid turnaround time.


Assuntos
COVID-19
6.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.01.05.21249196

RESUMO

BackgroundNew data streams are being used to track the pandemic of SARS-CoV-2, including genomic data which provides insights into patterns of importation and spatial spread of the virus, as well as population mobility data obtained from mobile phones. Here, we analyse the emergence and outbreak trajectory of SARS-CoV-2 in Bangladesh using these new data streams, and identify mass population movements as a key early event driving the ongoing epidemic. MethodsWe sequenced complete genomes of 67 SARS-CoV-2 samples (March-July 2020) and combined this dataset with 324 genomes from Bangladesh. For phylogenetic context, we also used 68,000 GISAID genomes collected globally. We paired this genomic data with population mobility information from Facebook and three mobile phone operators. FindingsThe majority (85%) of the Bangladeshi sequenced isolates fall into either pangolin lineage B.1.36 (8%), B.1.1 (19%) or B.1.1.25 (58%). Bayesian time-scaled phylogenetic analysis predicted SARS-COV-2 first appeared in mid-February, through international introductions. The first case was reported on March 8th. This pattern of repeated international introduction changed at the end of March when three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity across Bangladesh is reflected in the mobility data which shows the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka and the rest of the country during the following months. InterpretationIn Bangladesh, population mobility out of Dhaka as well as frequent travel from urban hotspots to rural areas resulted in rapid country-wide dissemination of SARS-CoV-2. The strains in Bangladesh reflect the local expansion of global lineages introduced early from international travellers to and from major international travel hubs. Importantly, the Bangladeshi context is consistent with epidemiologic and phylogenetic findings globally. Bangladesh is one of the few countries in the world with a rich history of conducting mass vaccination campaigns under complex circumstances. Combining genomics and these new data streams should allow population movements to be modelled and anticipated rendering Bangladesh extremely well prepared to immunize citizens rapidly. Based on our genomics data and the countrys successful immunization history, vaccines becoming available globally will be suitable for implementation in Bangladesh while ongoing genomic surveillance is conducted to monitor for new variants of the virus. FundingGovernment of Bangladesh, Bill and Melinda Gates Foundation, Wellcome Trust. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSThe emergence of SARS-CoV-2, leading to the COVID-19 pandemic, has motivated all countries in the world to obtain high resolution data on the virus. Globally over 300,000 strains have been sequenced and information made available in GISAID. Within the first 100 days of the emergence of SARS-CoV-2, genomic analysis from different countries led to the development of vaccines which have now reached market. Information on the prevailing genotypes of SARS-CoV-2 since introduction is needed in low and middle-income countries (LMICs), including Bangladesh, in order to determine the suitability of therapeutics and vaccines in the pipeline and help vaccine deployment. Added value of this studyWe sequenced SARS-CoV-2 genomes from strains that were prospectively collected during the height of the pandemic and combined these genomic data with mobility data to comprehensively describe i) how repeated international importations of SARS-CoV-2 were ultimately linked to nationwide spread, ii) 85% of strains belonged to the Pangolin lineages B.1.1, B.1.1.25 and B.1.36 and that similar mutation rates were observed as seen globally iii) the switch in genomic dynamics of SARS-CoV-2 coincided with mass migration out of cities to the rest of the country. We have assessed the contributions of population mobility on the maintenance and spread of clonal lineages of SARS-CoV-2. This is the first time these data types have been combined to look at the spread of this virus nationally. Implications of all the available evidenceSARS-CoV-2 genomic diversity and mutation rate in Bangladesh is comparable to strains circulating globally. Notably, the data on the genomic changes of SARS-CoV-2 in Bangladesh is reassuring, suggesting that immunotherapeutic and vaccines being developed globally should also be suitable for this population. Since Bangladesh already has extensive experience of conducting mass vaccination campaigns, such as the rollout of the oral Cholera vaccine, experience of developing and using new data streams will enable efficient and targeted immunization of the population in 2021 with COVID-19 vaccine(s).


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
7.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.426558

RESUMO

Rapidly spreading SARS-CoV-2 variants present not only an increased threat to human health due to the confirmed greater transmissibility of several of these new strains but, due to conformational changes induced by the mutations, may render first-wave SARS-CoV-2 convalescent sera, vaccine-induced antibodies, or recombinant neutralizing antibodies (nAbs) ineffective. To be able to assess the risk of viral escape from neutralization by first-wave antibodies, we leveraged our capability for Molecular Dynamic (MD) simulation of the spike receptor binding domain (S RBD) and its binding to human angiotensin-converting enzyme 2 (hACE2) to predict alterations in molecular interactions resulting from the presence of the E484K, K417N, and N501Y variants found in the South African 501Y.V2 strain - alone and in combination. We report here the combination of E484K, K417N and N501Y results in the highest degree of conformational alterations of S RBD when bound to hACE2, compared to either E484K or N501Y alone. Both E484K and N501Y increase affinity of S RBD for hACE2 and E484K in particular switches the charge on the flexible loop region of RBD which leads to the formation of novel favorable contacts. Enhanced affinity of S RBD for hACE2 very likely underpins the greater transmissibility conferred by the presence of either E484K or N501Y; while the induction of conformational changes may provide an explanation for evidence that the 501Y.V2 variant, distinguished from the B.1.1.7 UK variant by the presence of E484K, is able to escape neutralization by existing first-wave anti-SARS-CoV-2 antibodies and re-infect COVID-19 convalescent individuals.


Assuntos
COVID-19
8.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.426287

RESUMO

Genomic virus surveillance can lead to early identification of new variants and inform proper response during a pandemic. Using this approach, we have identified a new variant of the SARS-CoV-2 virus that emerged in the United States (U.S.) early in the coronavirus disease (COVID-19) pandemic and has become one of the most prevalent U.S variants. This new variant within the B.1.2 lineage referred to here as 20C-US, has not yet spread widely to other countries. The earliest 20C-US genomes can be traced to the southern U.S. in late May of 2020. A major early event was the rapid acquisition of five non-synonymous mutations. The changes carried by 20C-US include mutations to genes involved in virus particle maturation and release, processing of viral proteins, and RNA genome integrity and translation genes, all important for efficient and accurate virus production. In addition, 20C-US has since acquired two new non-synonymous mutations that highlight its ongoing evolution, one of which is a Q677H mutation in the spike protein adjacent to the furin cleavage site. We predict that 20C-US may already be the most dominant variant of SARS-CoV-2 in the U.S. The ongoing evolution of 20C-US, as well as other dominant region-specific variants emerging around the world, should continue to be monitored with genomic, epidemiologic, and experimental studies to understand viral evolution and predict future outcomes of the pandemic.


Assuntos
Infecções por Coronavirus , COVID-19
9.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.425144

RESUMO

Animal models recapitulating the distinctive features of severe COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. However, the cause(s) and mechanisms of lethality in this mouse model remain unclear. Here, we evaluated the spatiotemporal dynamics of SARS-CoV-2 infection for up to 14 days post-infection. Despite infection and moderate inflammation in the lungs, lethality was invariably associated with viral neuroinvasion and neuronal damage (including spinal motor neurons). Neuroinvasion occurred following virus transport through the olfactory neuroepithelium in a manner that was only partially dependent on hACE2. Interestingly, SARS-CoV-2 tropism was overall neither widespread among nor restricted to only ACE2-expressing cells. Although our work incites caution in the utility of the K18-hACE2 model to study global aspects of SARS-CoV-2 pathogenesis, it underscores this model as a unique platform for exploring the mechanisms of SARS-CoV-2 neuropathogenesis. SUMMARYCOVID-19 is a respiratory disease caused by SARS-CoV-2, a betacoronavirus. Here, we show that in a widely used transgenic mouse model of COVID-19, lethality is invariably associated with viral neuroinvasion and the ensuing neuronal disease, while lung inflammation remains moderate.


Assuntos
Doenças Respiratórias , Pneumonia , Síndrome Respiratória Aguda Grave , COVID-19 , Degeneração Neural , Inflamação
10.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.426571

RESUMO

Quantifying evolutionary change among viral genomes is an important clinical device to track critical adaptations geographically and temporally. We built image-based haplotype-guided evolutionary inference (ImHapE) to quantify adaptations in expanding populations of non-recombining SARS-CoV-2 genomes. By combining classic population genetic summaries with image-based deep learning methods, we show that different rates of positive selection are driving evolutionary fitness and dispersal of SARS-CoV-2 globally. A 1.35-fold increase in evolutionary fitness is observed within the UK, associated with expansion of both the B.1.177 and B.1.1.7 SARS-CoV-2 lineages.


Assuntos
Convulsões
11.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.426537

RESUMO

We selected SARS-CoV2 specific single domain antibodies (sdAbs) from a previously constructed phage display library using synthetic immunogenic peptides of the virus spike (S) protein as bait. The sdAbs targeting the cleavage site (CS) and the receptor binding domain (RBD) in S protein efficiently neutralised the infectivity of a pseudovirus expressing SARS-CoV2 S protein. Anti-CS sdAb blocked the virus infectivity by inhibiting proteolytic processing of SARS-CoV2 S protein. Both the sdAbs retained characteristic structure within the pH range of 2 to 12 and remained stable upto 65{degrees}C. Furthermore, structural disruptions induced by a high temperature in both the sdAbs were largely reversed upon their gradual cooling and the resulting products neutralised the reporter virus. Our results therefore suggest that targeting CS in addition to the RBD of S protein by sdAbs could serve as a viable option to reduce SARS-CoV2 infectivity and that proteolytic processing of the viral S protein is critical for infection.


Assuntos
Síndrome Respiratória Aguda Grave
12.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.426295

RESUMO

Special Infectious Agent Unit in King Fahd Medical Research Center at King Abdulaziz University, Jeddah, Saudi Arabia, has pursed the anti-viral project field to optimize the group of medicinal plants for human-infectious diseases. We have begun virtually in this field since COVID-19 pandemic, besides our divergence in the infectious agents. In this study and based on the previous review, Hypericum perforatum (St. Johns Wort) and Echinacea (gaia HERBS(R)) were tested in vitro using Vero E6 cells for their anti-viral effects against the newly identified Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) through its infectious cycle from 0 to 48 hours post infection. The hypericin (0.9 mg) of H. perforatum and the different parts (roots, seeds, aerial) of two types of Echinacea species (Echinacea purpurea and Echinacea angustifolia) were examined their efficacy in certain concentration and under light-dependent anti-viral activities to measure the inhibition of the SARS-CoV-2 mRNA expression of RNA-dependent RNA polymerase (RdRP) gene and the viral load with quantitative real-time polymerase chain reaction (qRT-PCR), and to assess the neutralization of the SARS-CoV-2 spike receptor binding on cell culture assay. Interestingly, the mixture (H.E.) of 100 mg/mL of H. perforatum and Echinacea was tested too on SARS-CoV-2 and showed crucial anti-viral activity competing H. perforatum then Echinacea effects as anti-viral treatment. Therefore, the results of gaia HERBS(R) products, H. perforatum and Echinacea species, applied in this study showed significant anti-viral and virucidal effects in the following order of potency: H. perforatum, H.E., and Echinacea on SARS-CoV-2 infectious cycle; and will definitely required a set up of clinical trial with specific therapeutic protocol based on the outcome of this study. Author SummaryAfter an outbreak of Rift Valley Fever in the Southern region of Saudi Arabia, particularly in May 2003, Special Infectious Agents Unit (SIAU) was established and founded by Prof. Esam Ibraheem Azhar. This unit contains a full range of facilities including Biosafety Level 3, allows him and his research groups to ambulate and culture risk group 3 viruses in Saudi Arabia & Gulf States for the first time. Since that time, SIAU and our international collaboration have been extended to implement a standard protocols in the infectious agents diagnostics procedure through different mode of collaboration including exchange of expertise, joint research program and more recently a technology transfer agreements with number of international institute sharing same interests. Furthermore, we have been engaged in number of researches related to Hajj & Umrah plus number of national services with the Ministry of Health (MOH) through which, we utilize our Mobile biosafety level 3 Lab to enhance the diagnostics of MERS CoV in the Holly sites during Hajj since 2014. In our SIAU and with a powerful team, we have excellent researches made valuable contributions through in vivo and in vitro animal and human studies, and several human viral pathogens which are a threat to global health security due to millions of pilgrims visiting Saudi Arabia every year from 182 countries: with particular areas of interests in: Alkhurma Viral Hemorrhagic Fever, Dengue Hemorrhagic Fever Viruses, Rift Valley Fever Virus, MERS-CoV and more recently the new global infectious diseases threat, Sever Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2).


Assuntos
Transtornos de Sensação , Febre do Vale de Rift , Síndrome Respiratória Aguda Grave , Febres Hemorrágicas Virais , COVID-19
13.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.425914

RESUMO

The Spike protein (S protein) is a critical component in the infection of the new coronavirus (SARS-CoV-2). The objective of this work was to evaluate whether peptides from S protein could cause negative impact in the aquatic animals. The aquatic toxicity of SARS-CoV-2 spike protein peptides derivatives has been evaluated in tadpoles (n = 50 tadpoles / 5 replicates of 10 animals) from species Physalaemus cuvieri (Leptodactylidae). After synthesis, purification, and characterization of peptides (PSDP2001, PSDP2002, PSDP2003) an aquatic contamination has been simulatedwith these peptides during 24 hours of exposure in two concentrations (100 and 500 ng/mL). The control group ("C") was composed of tadpoles kept in polyethylene containers containing de-chlorinated water. Oxidative stress, antioxidant biomarkers and neurotoxicity activity were assessed. In both concentrations, PSPD2002 and PSPD2003 increased catalase and superoxide dismutase antioxidants enzymes activities, as well as oxidative stress (nitrite levels, hydrogen peroxide and reactive oxygen species). All three peptides also increased acetylcholinesterase activity in the highest concentration. These peptides showed molecular interactions in silico with acetylcholinesterase and antioxidant enzymes. Aquatic particle contamination of SARS-CoV-2 has neurotoxics effects in P. cuvieri tadpoles. These findings indicate that the COVID-19 can constitute environmental impact or biological damage potential. HIGHLIGHTSO_LISARS-CoV-2 spike protein peptides (PSDP) were synthesized, purified, and characterized by solid phase peptide synthesis. C_LIO_LIPSDP peptides promoted REDOX imbalance and acute neurotoxicity in tadpoles (Physalaemus cuvieri) C_LIO_LIIn silico studies have shown interactionsbetween peptides and acetylcholinesterase and antioxidant enzymes C_LIO_LIAquatic particle contamination of SARS-CoV-2 can constitute additional environmental damage C_LI GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=106 SRC="FIGDIR/small/425914v1_ufig1.gif" ALT="Figure 1"> View larger version (49K): org.highwire.dtl.DTLVardef@1b99c31org.highwire.dtl.DTLVardef@bd6d71org.highwire.dtl.DTLVardef@5c37f2org.highwire.dtl.DTLVardef@5d027d_HPS_FORMAT_FIGEXP M_FIG C_FIG


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Síndromes Neurotóxicas
14.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.423947

RESUMO

Morphological profiling of cells in the presence of perturbants, also known as phenomics, is gaining momentum given its successful implementation for drug discovery and compound profiling. The current COVID-19 pandemic has fueled the search for new and fast methods to identify novel or repurposed therapeutic drugs. A popular method to identify antiviral drugs is the use of antibody-based immunofluorescence to visualise infected cells. However, this method lacks depth towards the effect of such drugs on the host cells. Here we present a phenomics workflow for untargeted phenotypic drug screening of virus infected cells, combining Cell Painting with antibody-based detection of viral infection in a single and simple method and provide a semi-automated image analysis pipeline for classification and feature extraction of virus infected cells. Our phenomics workflow provides valuable information about the effect of both virus and drugs on the host cells. We validated our method using a panel of 9 antiviral compounds including known and novel compounds on MRC5 human lung fibroblasts infected with Human coronavirus 229E (CoV-229E). Two of the compounds showed strong antiviral efficacy concomitant with a recovery of the morphological profile towards non-infected.


Assuntos
COVID-19 , Viroses
15.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.12.426373

RESUMO

The emergence of new variants of SARS-CoV-2 herald a new phase of the pandemic. This study used state-of-the-art phylodynamic methods to ascertain that the rapid rise of B.1.1.7 "Variant of Concern" most likely occurred by global dispersal rather than convergent evolution from multiple sources.

16.
preprints.org; 2020.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202004.0526.v1

RESUMO

The emergence of novel SARS-CoV-2 virus in China in December 2019 has turned into a global pandemic through continued spread beyond borders. This review was aimed to extract up-to-date information on the evolution, transmission, clinical manifestations, diagnosis, treatment and prevention of COVID-19 to fight against this common enemy. PubMed, Scopus and Google Scholar were the sources of literature; whereas CDC, WHO and Worldometer provided updated information. Bats served as the reservoirs of this virus while pangolin is believed as an intermediate host to transmit the virus to humans. Direct human-to-human and indirect transmissions were involved. Major clinical manifestations included fever, cough, fatigue, sputum production and shortness of breath. Chest radiographs mostly showed bilateral ground-glass opacities. Aged patients and patients with comorbidities had higher case fatality ratios. Critical cases were vulnerable to develop pneumonia, multi-organ failure and deaths. Overall situation in China has improved substantially. The European region and region of the Americas were the worst hit out of six WHO global regions. PCR based methods are used for the diagnosis of COVID-19. Severe/critical cases essentially require supportive or intensive cares. Avoiding exposure to COVID-19 is the best way to prevent the disease. Thus, this review provides a snapshot on COVID-19.


Assuntos
Insuficiência de Múltiplos Órgãos , Dispneia , Febre , Pneumonia , Tosse , Morte , COVID-19 , Fadiga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA